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Premise of the study: The broad austral distribution of Schoen-
eae is almost certainly a product of long-distance dispersal.
Owing to the inadequacies of existing phylogenetic data and
a lack of rigorous biogeographic analysis, relationships within
the tribe remain poorly resolved and its pattern of radiation
and dispersal uncertain. We employ an expanded sampling
of taxa and markers, and a rigorous analytic approach, to
address these limitations. We evaluate the roles of geography
and ecology in stimulating the initial radiation of the group,
as well as its subsequent dispersal across the Southern Hemi-
sphere.



Methods: A dated tree was reconstructed using reversible-
jump MCMC with a polytomy prior and molecular dating,
applied to data from two nuclear and three cpDNA regions.
Ancestral areas and habitats were inferred using dispersal—
extinction—cladogenesis models.

Key results: Schoeneae originated in Australia in the Paleo-
cene. The existence of a “hard” polytomy at the base of
the clade reflects the rapid divergence of six principal lin-
eages ca. 50 Ma within Australia. From this ancestral area,
Schoeneae have traversed the austral oceans with remark-
able frequency, a total of 29 distinct dispersal events being
reported here. Dispersal rates between landmasses are not
explicable in terms of the geographical distances separating
them. Transoceanic dispersal generally involved habitat stasis.

Conclusions: Although the role of dispersal in explaining
global distribution patterns is now widely accepted, the ap-
parent ease with which such dispersal may occur has perhaps
been under-appreciated. In Schoeneae, transoceanic dispersal
has been remarkably frequent, with ecological opportunity,
rather than geography, being most important in dictating
dispersal patterns.

Key words: biogeography; dispersal-extinction—cladogenesis;
habitat shift; transoceanic dispersal; niche conservatism; poly-
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Introduction

Biologists since the time of Hooker have been intrigued by the phyto-
geographic affinities of Australia, southern Africa, and South America
(Hooker, 1853; Levyns, 1964; Crisci et al., 1991; Crisp et al., 1999; Galley
and Linder, 2006; Moreira-Mufioz, 2007). Vicariance associated with
the break-up of Gondwana by ca. 120 Ma (Ali and Krause, 2011) was
previously considered to be the leading cause of this pattern (Levyns,



1964; Raven and Axelrod, 1974), but more recent evidence from fossils
and molecular dating (Sanmartin and Ronquist, 2004; Linder et al., 2003;
Cook and Crisp, 2005; Pirie et al., 2008; Sauquet et al., 2009) has made
it clear that many plant lineages showing this disjunct distribution origin-
ated after the break-up, implicating long-distance dispersal (Raven and
Axelrod, 1974; de Queiroz, 2005; but see Heads, 2011). The schoenoid
sedges (Cyperaceae: Schoeneae) are one such group: the sedge family as
a whole has a crown age of ca. 75Ma (Janssen and Bremer, 2004; Be-
snard et al., 2009), and tribe Schoeneae (over 450 species) is distributed
throughout the southern continents, with particularly high endemism in
Australia and South Africa (data from Govaerts et al., 2011). Verboom
(2006) concluded that at least five transoceanic dispersal events must
have taken place in Schoeneae over the last 40 Ma. The precise number
and direction of these dispersal events remains unclear, however, due to
incongruence between published phylogenies, incomplete resolution, and
the lack of rigorous biogeographic analysis. We address these issues by
presenting robust phylogenetic and biogeographic reconstructions for the
tribe.

Morphological classification has been problematic in many clades of
Cyperaceae owing to the severe reduction of floral parts and the rampant
convergence of traits in the family, emphasizing the utility of molecular
phylogenies in sedge systematics (Muasya et al., 1998, 2009b). The cp-
DNA phylogenies of Verboom (2006) and Muasya et al. (2009a) and the
cpDNA + ITS tree of Jung and Choi (2013) demonstrate that Schoeneae,
as defined by both Bruhl (1995) and Goetghebeur (1998), is not mono-
phyletic, on account of their inclusion of Cladium, Carpha, and Trianoptiles.
Schoeneae sensu Goetghebeur (1998) contains five further genera shown
by Muasya et al. (2009a) to fall outside the core Schoeneae clade. These
are Arthrostylis, Actinoschoenus, Trachystylis, Pleurostachys, and the large
genus Rhynchospora, which, on the basis of cpDNA data, belongs in a
separate clade containing Cypereae and Cariceae. Hinchliff and Roalson’s
(2013) tree of Cyperaceae agrees with the exclusion of these five gen-
era from Schoeneae, but supports the inclusion of Cladium, Carpha, and
Cryptangieae in Schoeneae. Support for the monophyly of Schoeneae s. s.
is also equivocal. The maximum-parsimony tree of Muasya et al. (2009a),



based on rbcL and trnlL-F data, found no support for Schoeneae as a
clade, or even for their stricter “Schoeneae 1” group, which includes
Carpha + Trianoptiles and Scleria. In contrast, Verboom’s (2006) Bayesian
tree, based on rbcL, rps16, and trnL-E weakly supports the monophyly
of Schoeneae excluding Carpha + Trianoptiles and Scleria (PP = 0.96),
a circumscription of Schoeneae not recovered by Muasya et al. (2009a).
This clade was recovered by (Jung and Choi, 2013) and (Hinchliff and
Roalson, 2013), with PP = 1.00 in the former but with very weak support
in the latter (BP = 0.58). These conflicting interpretations of the tribal
limits of Schoeneae based on cpDNA data indicate the need for data from
independently assorting loci.

A striking feature of existing phylogenies is the high support at deep
and shallow nodes combined with a complete lack of support for any
resolution between the six main subclades of Schoeneae (detailed in
Table 1, which are themselves well supported (PP = 1.00 in Verboom,
2006; BP > 0.75 in Muasya et al., 2009a; BP > 0.97 in Hinchliff and
Roalson, 2013). This polytomy at the base of the Schoeneae may be
“soft”, reflecting insufficient information to recover the true relationships
between the lineages, or “hard”, reflecting near-instantaneous divergence
of these six clades (Lewis et al., 2005). Lewis et al. (2005) developed a
reversible-jump MCMC procedure that enables sampling of trees with one
or more polytomies during Bayesian phylogeny reconstruction. Although
the motivation for this method was to prevent the inflation of support
for nodes above very short branches (the “star tree paradox™), it also
allows the posterior probability of a hard polytomy at a particular node
to be calculated as the proportion of sampled trees with a polytomy at
the position of interest (Nagy et al., 2012).

If the different clades of Schoeneae were found to have distinct geo-
graphic distributions, the rapid divergence between them might be in-
terpreted as the result of simultaneous dispersal to different regions
of the globe, followed by peripatric differentiation and local speciation
(Darwin, 1859; Jordan, 1905). An alternative scenario is that the clades
diverged into different ecological niches, either within the ancestral area
or associated with long-distance dispersal among the southern continents
(sympatry: Darwin, 1859; Bush, 1969; Givnish et al., 2009; parapatry:



Jain and Bradshaw, 1966; Cracraft, 1982).

The fact that Schoeneae are widespread south of the equator (Govaerts
et al., 2011) suggests that their distribution is not limited by dispersal
ability. On the other hand, they are almost entirely confined to the South-
ern Hemisphere and are most prevalent on oligotrophic soils in temperate
rather than tropical zones, leading us to postulate a significant role for
habitat filtering (i. e., ecological constraints on where populations can
be established; (Endler, 1982; Cavender-Bares et al., 2006)) in their
biogeographic history.

The specific aims of the present study are as follows:

* to re-evaluate the monophyly of Schoeneae, particularly with regard
to the placement of the Carpha and Scleria clades, by adding nuclear
sequence data to existing chloroplast data sets and by increasing
taxon sampling;

* to resolve the relationships of the principal schoenoid lineages or
else to evaluate whether their polytomous relationship is “hard”,
reflecting rapid divergence;

* to estimate (taking phylogenetic uncertainty into account) the times
of divergence of the principal lineages and the timing and direction-
ality of transoceanic dispersal events in Schoeneae;

* to test whether differentiation of the principal schoenoid lineages
coincided with intercontinental dispersal and/or specialization to
different habitats (i. e., whether the radiation was adaptive); and

* to explore the roles of geography vs. habitat conservatism on dis-

persal in Schoeneae.

Materials and methods

Species and marker sampling

Species were selected in such a way as to ensure that the concatenated
sequence matrix was as complete as possible and that genera (or mono-



phyletic portions of genera) were represented proportionally to their size
while capturing their biogeographic distribution (Table 1). As outgroups
we sampled at least one taxon from each major non-schoenoid lineage of
Cyperaceae, including two representatives of Hypolytreae, so that their
most recent common ancestor could be used as a calibration point (see
BEAST analysis below). For Schoeneae, we made use of previously pub-
lished sequence data (Zhang et al., 2004; Chacén et al., 2006; Slingsby
and Verboom, 2006; Verboom, 2006; Muasya et al., 2009a), supplement-
ing these with new sequences, principally from the external and internal
transcribed spacers (ETS and ITS) of the nuclear ribosomal gene region
(nrDNA), but also filling some cpDNA gaps (Appendix 1). ETS and ITS
have been used to resolve relationships in Cariceae and Cypereae, and
in regional studies (Waterway and Starr, 2007; Larridon et al., 2013;
Jung and Choi, 2013), the latter being shown to have higher information
content than most cpDNA markers in the sedges (Hinchliff and Roalson,
2013).

DNA extraction, PCR amplification, and sequencing

Silica-dried leaf and culm material was pulverized for ca. 20 min at 30 Hz
in an MM400 oscillating mill (Retsch GmbH, Haan, Germany). DNA was
extracted using the CTAB method (Doyle and Dickson, 1987; Gawel and
Jarret, 1991). The chloroplast regions were amplified with the primer
combinations used by Verboom (2006). The ETS region was amplified
with primers ETS-1F and 18S-R (Starr et al., 2003) and ITS with primers
ITS-4 and ITS-A (at UNE) or ITS-L (at UCT) (White et al., 1990; Hsiao
et al., 1994; Blattner, 1999). PCR reagents were mixed to the following
concentrations: Taq buffer with dye 1x, MgCl, 2mM in total, each dNTP
0.2mM, each primer 0.3 mM, Tag polymerase 1 U (KAPA Biosystems,
Ltd., Cape Town, RSA). To promote amplification of the nuclear mark-
ers, dimethyl sulphoxide and bovine serum albumen were added to 2 %
(v/v) and 0.04 % (w/v) respectively. PCR reactions were done in AB2720
thermal cyclers (Applied Biosystems, Inc., Foster City, California, USA)
using the following programme: initial denaturation at 94 °C for 2 min;
32 cycles of denaturation at 94 °C for 30's, annealing at 52 °C for 30s, ex-



tension at 72 °C for 90s; and a final extension step at 72 °C for 7 min. PCR
products were cleaned and sequenced on ABI3730XL cycle sequencers at
the University of Stellenbosch DNA Sequencing Unit (Stellenbosch, RSA).

Matrix assembly

Contigs of forward and reverse sequences were assembled with SeqMan
v. 7.0.0 (DNASTAR, Inc.). (New sequences are deposited on GenBank with
accession numbers KF553442-KF553627.) These were aligned with previ-
ously published sequences downloaded from GenBank (Appendix 1) using
Muscle v. 3.8.31 (Edgar, 2004), and the resulting alignments edited by
hand in BioEdit v. 7.0.9 (Hall, 1999). Ambiguously aligned regions, noted
in all matrices except rbcL, were excluded from downstream analyses.

Model testing

The best-fitting model of sequence evolution for each gene region was
selected on the basis of BIC values (Luo et al., 2010) calculated by MrAIC
v. 1.4.4 (Nylander, 2004), which uses PhyML v. 3.0 (Guindon and Gascuel,
2003) to optimize parameters on the maximume-likelihood (ML) tree for
each model. The selected models were as follows: GTR+T for ETS, ITS,
and rps16; HKY+T for rbcL. and trnL. The proportions of variable sites
were 574/713 (81 %) for ETS, 457/844 (54 %) for ITS, 386/1430 (27 %)
for rbcL, 538/1204 (45 %) for rps16, and 622/1285 (48 %) for trnL.

Phylogeny reconstruction

The phylogeny was reconstructed using Bayesian MCMC algorithms, both
sampling and not sampling polytomous trees. We first inferred the gene
trees for each of the five regions separately to identify potential incon-
gruence. As there were no instances of conflict at well supported nodes
(Appendix S1), the matrices of the five regions were concatenated and
partitioned by gene for the downstream analyses. The phylogeny was
reconstructed in MrBayes v. 3.2.1 (Ronquist et al., 2012), averaging
over all submodels of the GTR relative substitution rate model (using



“nst=mixed”) and modelling rate heterogeneity with a gamma distribu-
tion with four rate categories. All parameters except topology and branch
lengths were unlinked across partitions. The MCMC sampler was run
four times simultaneously for 4 x 107 generations with four Metropolis-
coupled chains at a temperature setting of 0.2, sampling 10* parameter
estimates in each run. Tracer v. 1.5 (Rambaut and Drummond, 2009)
was used to calculate the effective sample size of each parameter. These
were all above 2000, indicating that the MCMC algorithm had been
run long enough, and all four runs had converged on the same para-
meter estimates. The average standard deviation of split frequencies
reached 0.01 after 1.1 x 107 generations, indicating topological con-
vergence. The first 50% of samples were discarded as burn-in and a
consensus tree was created from the post-burn-in samples in MrBayes,
with posterior probabilities (PP) of nodes indicating clade support. (The
sequence alignments and trees produced are deposited in TreeBase at
http://purl.org/phylo/treebase/phylows/study/TB2:514725.)

As reversible-jump MCMC sampling of trees containing polytomies is
not implemented in MrBayes, the phylogeny reconstruction was repeated
in Phycas v. 1.2.0 (Lewis et al., 2005), using the same partitions and the
models selected with MrAIC, with the polytomy prior in effect and the
prior on the resolution classes set to 1 (i. e., all trees equally probable
a priori). This ensured that there was no sampling bias in favour of
resolved trees due to the greater number of possible dichotomous than
multichotomous trees for a given number of terminals. The analysis was
run twice for 2 x 10° cycles with a single chain, saving 2 x 10® samples
in each run. The parameter summaries and plot of split probabilities
indicated that the MCMC chain had converged and the first 5 x 10* cycles
were discarded as burn-in. The post-burn-in trees were summarized,
annotated, and plotted using NCLconverter distributed with the Nexus
Class Libraries (Lewis and Holder, 2008), the Newick Utilities (Junier and
Zdobnov, 2010), and the packages ape v. 3.0-8 (Paradis et al., 2004) and
phyloch v. 1.5-3 (Heibl, 2008) for R v. 3.0.1 (R Core Team, 2013). The
Bayesian node support values were supplemented with nonparametric
bootstrap proportions (BP) calculated from 1000 bootstrap samples using
RAXML v. 7.4.4 through the CIPRES Science Gateway (Stamatakis et al.,
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2008; Miller et al., 2010), applying a GTR+T"55 model to each partition.

To establish the effect of incomplete or inconsistent sampling in the
sequence matrix, we also ran the MrBayes and Phycas analyses on the
subset of taxa for which both nuclear and at least two chloroplast gene
regions had been sampled. This subset comprised 18 taxa representing all
clades. The models with the best BIC scores for this subset were GTR+T"
for ETS, ITS, rbcL, and rps16; HKY+T for trnL. MCMC settings were as
above except that the analysis converged rapidly enough that it was run
for only 5 x 10% cycles in Phycas, discarding the first 2.5 x 10* as burn-in.

Molecular dating

To estimate divergence dates in Schoeneae, node ages were coestimated
with the phylogeny and other model parameters using an uncorrelated
relaxed-clock model in BEAST v. 1.7.5 (Drummond and Rambaut, 2007).
The data set was partitioned as above and analysed with the same substi-
tution models, using the MrBayes consensus tree as the starting tree.

Mapanioideae and Cyperoideae were constrained to be reciprocally
monophyletic and the split between them (i. e., the crown age of Cyper-
aceae) was calibrated as a prior with a uniform distribution between 67
and 83 Ma, corresponding to the error range of Besnard et al.’s (2009)
estimate for this node from a tree of the commelinoids (mainly Poaceae
and Cyperaceae) that incorporated six fossil calibrations. The mid-Eocene
fossil of Volkeria messelensis S.Y.Smith et al. described by Smith et al.
(2009) was used to set a lognormal prior of yu = 6 Ma offset by 36.5 Ma,
with Inoc = 1Ma, on the crown age of the Hypolytreae (represented
by Hypolytrum nemorum (Vahl) Spreng. and Mapania cuspidata (Miq.)
Uittien in our data set), yielding a 95 % prior HPD interval of 60-37 Ma
(lower- to mid-Eocene; Gradstein et al., 2004).

Gamma-distributed priors with shape = 1 and scale = 1 were set on
the means of the uncorrelated log-normal relaxed clocks of each partition,
as well as on the birth and death rates of the birth-death diversification
model (Drummond et al., 2006; Gernhard, 2008). All other priors were
kept at their default settings.

Analyses were run four times for 10® generations, saving 10% samples in



each run. Convergence was assessed with Tracer v. 1.5 and the first 5 x 107
generations were discarded as burn-in. The maximum-clade-credibility
tree was annotated with medians and 95 % HPD intervals of node ages
using TreeAnnotator v. 1.7.5.

Ancestral area reconstruction

Ancestral areas were reconstructed using dispersal-extinction—cladogene-
sis (DEC) models in Lagrange (Ree et al., 2005; Ree and Smith, 2008),
which makes use of branch length information to infer the maximum-
likelihood (ML) combination of areas at each node of the tree. The species
in the tree were scored as present or absent in each botanical region
(Level 2 of Brummitt, 2001) as indicated in the World Checklist of Mono-
cotyledons (Govaerts et al., 2011). To facilitate analyses, the number of
states was reduced as follows: the various Pacific regions (including New
Caledonia but excluding New Zealand) were combined into a single area,
as were Central and South America, and Malesia and Southeast Asia. The
seven retained states were thus Southern Africa, Madagascar, Southeast
Asia, Australia, New Zealand, Pacific Islands, and South America. The
Eurasian and North American regions were excluded from the analysis
since Schoenus nigricans L. is the only species in our data set to occur
there. Its documented occurrence in South America is based on a single
record from Uruguay, regarded by Osten (1931) as “sin duda introducida
accidentalmente”, so this taxon was scored as absent from this region.
Lagrange C++ v. 0.20-28 (downloaded from http://www.github.
com/blackrim/lagrange) was used to optimize tree-wide dispersal and
extinction parameters of the biogeographic model and to infer ances-
tral areas. All combinations of areas were allowed as ancestral states
and the dispersal rates were set to equal on the basis of the model test
results (see below). To account for phylogenetic uncertainty (Lutzoni
et al., 2001), especially at the base of Schoeneae, the Lagrange analysis
was run over 1000 trees randomly selected from the posterior distri-
bution sampled with BEAST. The Lagrange output was parsed and the
mean proportional likelihoods of ancestral states calculated in R, mak-
ing use of the packages ape and phyloch. (The R code is available at
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https://github.com/javiljoen/phylojjeny.)

To test whether dispersal rates in Schoeneae were determined by geo-
graphic distance, the likelihoods of the following models were compared
on the maximum-clade-credibility dated tree: (A) all rates equal, (B) all
rates different (estimated), (C) rates inversely proportional to minimum
distance between regions, and (D) rates inversely proportional to squared
distance (i. e., dispersal is limited by propagule density, assuming homo-
geneous radial diffusion from the source area). The pairwise minimum
Great-Circle distances in the latter two models were calculated with the
R packages sp v. 1.0-9 (Pebesma and Bivand, 2005) and rgdal v. 0.8-9
(Bivand et al., 2013), using shapefiles from http://www.kew.org/gis/
tdwg (R code at https://github.com/javiljoen/phylojjeny). Model
weights were calculated from the differences between AIC values as

e—O.SxAi
w; = W,

where A; = AIC; — AIC,,,;, (Table 2).

Ancestral habitat reconstruction

The distributions of lineages may be constrained more by ecological op-
portunity than dispersal ability (Crisp et al., 2009) and shifts to distinct
habitats may be associated with cladogenesis. We therefore felt justified
in treating habitat types as “areas” under a biogeographic DEC model.
Lagrange has the additional advantage that it allows the inference of
polymorphic ancestral states. Habitat descriptions for each species were
extracted from the available literature and supplemented with our own
observations (Appendix S2). Habitats were coded as perennially wet or
seasonally dry (or both) and closed or open (or both). Therophytes in
seasonally wet habitats were classified as wet-adapted species, while
hemicryptophytes in such habitats were considered dry-adapted because
they must survive a dry season, during which nutrient uptake and carbon
fixation are limited. Habitats described as forest or woodland were con-
sidered closed, whereas grasslands, streamsides, bogs, alpine vegetation,
heathland, and scrub were coded as open. Australian usage of the term
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“swamp” (Sainty and Jacobs, 2003) is more or less equivalent to African
“marsh”, and both were coded as open unless specifically described as
closed. The phylogenetic signal in the two variables was assessed to de-
termine whether ancestral states could sensibly be reconstructed. The ML
estimate of the tree transformation parameter A was calculated using fit-
Discrete in the R package geiger v. 1.3-1 (Harmon et al., 2008) (modified
to allow A values > 1), where A = 1 corresponds to Brownian motion and
A =0 indicates that trait evolution is random with respect to phylogeny
(i. e. no phylogenetic signal) (Pagel, 1999). Vegetation type and habitat
moisture at ancestral nodes were reconstructed as described above for
ancestral areas, except that an asymmetric (all-rates-different) dispersal
rate matrix was optimized separately on each of the 1000 trees.

Results

Circumscription and monophyly of Schoeneae

The phylogenetic tree reconstructed with MrBayes, Phycas, and RAXML is
shown in Figure 1. All three analyses excluded Cladium, Scleria, Rhynchospora,
and Arthrostylis from Schoeneae with PP/BP = 1.00. Cladium was re-
solved as sister to all the other Cyperoideae, the next most basal split
being the divergence of the Scleria + Bisboeckelereae clade from the
remainder of the Cyperoideae. Rhynchospora and Arthrostylis resolved
closer to Cariceae and Cypereae than to Schoeneae.

Schoeneae s. s. (henceforth, Schoeneae) had support of PP = 1.00/1.00
(MrBayes/Phycas) and BP = 1.00 (RAXML). Trianoptiles formed a clade
with Carpha that was sister to Schoeneae, but the Schoeneae + Carpha
clade was not supported by any of the three analyses (PP < 0.90, BP =
0.65). In the analyses of the more fully sampled taxa (Fig. 2), Schoeneae
was once again supported by all three methods (PP = 0.99/0.99, BP =
0.83), as was the monophyly of Schoeneae + Carpha clade + Lagenocarpus
(PP = 1.00/1.00, BP = 1.00). The relationships between Schoeneae,
Carpha clade, and Lagenocarpus were not resolved using either data set.

The MrBayes and Phycas trees were largely congruent, although the
Phycas analysis returned lower support values at all supergeneric nodes
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except that subtending Caustis + Lepidosperma + Tricostularia clades
(PP =0.80/0.95), a node not recovered in the ML analysis (BP < 0.50),
nor in the Phycas analysis of the well-sampled taxa. The nodes that col-
lapsed in the Phycas analysis were generally poorly supported in MrBayes
and were subtended by short branches (< 0.01 substitutions per site).

Relationships within Schoeneae

The six main subclades were all well supported (PP/BP = 1.00), as were
clades within them that roughly correspond to named genera (or mono-
phyletic portions of genera). Relationships between these main clades,
however, were weakly supported and inconsistent across analyses, includ-
ing in the analyses run on the subset of taxa that had been fully sampled
(Fig. 2). This lack of resolution was also apparent in the individual gene
trees (Appendix S1), indicating that it is the result of low phylogenetic
signal, rather than gene tree conflict. The sole exception is the Bayesian
support for Gahnia + Lepidosperma clade in the trnL data (PP = 0.99, but
BP = 0.66), which was not recovered (but also not contradicted) by the
other data sets. Of the trees sampled by Phycas, 73 % had a polytomy at
the base of Schoeneae (82 % in the more densely sampled subset). None
was completely unresolved (a hexachotomy), but the only supported
node was Caustis + Lepidosperma + Tricostularia (PP = 0.95), which was
unsupported in the other analyses, as mentioned above.

Our results confirm the polyphyly of the genera Schoenus, Tetraria, and
Costularia. Schoenus consists of at least two clades, one containing most
of the species of Schoenus, as well as Tetraria s.s. (Schoenus clade), and
the other in Tricostularia clade with reticulate-sheathed Tetraria. The
Australian T octandra (Nees) Kiik. and T. capillaris (EMuell.) J.M.Black
were not resolved near either of the African clades of Tetraria, but near
Morelotia (Tricostularia clade) and Neesenbeckia (Lepidosperma clade),
respectively. Costularia arundinacea (Sol. ex Vahl) Kiik., classified as a
member of subgenus Lophoschoenus was placed in the Tricostularia clade,
rather than with its congeners (all members of subgenus Costularia). And
the species of Costularia and Oreobolus in the Oreobolus clade were not
consistently recovered as clades corresponding to genera.

13



Molecular dating

The well supported nodes in the MrBayes and Phycas analyses were also
recovered by BEAST (Appendix S3). Along the backbone of Schoeneae,
the BEAST analysis additionally supported the monophyly of Caustis +
Lepidosperma + Tricostularia (PP = 1.00).

Schoeneae had split from the Carpha clade by the Paleocene 95% HPD
[71.4-53.6] Ma) and the six main subclades diverged in the space of
ca. 5.5 Ma in the late-Paleeocene-Eocene (between [60.1-43.6] Ma and
[56.1-38.7] Ma). Within the Tetraria s.s. and the Oreobolus clades, the
bulk of extant species diversity is recent (< 10 Ma), while in the other
clades it is older.

Ancestral areas and habitats

Schoeneae was unambiguously reconstructed as originating in Australia
(Fig. 3, Appendix S4). Furthermore, the initial split into the six subclades
was found to have taken place within that continent, with each subclade
still containing Australian representatives today.

Dispersal of five of the six lineages to the other austral continents
commenced in the Oligocene. During the Oligocene-Miocene, the Pacific
islands were colonized four times from Australia (Fig. 3, Appendix S4).
Dispersal to southeast Asia (including Malesia) and New Zealand started
in the Miocene, and Madagascar was colonized by two lineages in the late
Miocene. The African mainland was reached by three different Australian
and Pacific lineages during the Oligocene and Miocene, by Capeobolus—
Cyathocoma from an uncertain origin, and by Malagasy Costularia in
the Pliocene. While most changes in distribution were reconstructed as
range expansion events, eleven vicariance events were also inferred, e. g.
between Tetraria capillaris and Neesenbeckia punctoria (Vahl) Levyns.

The model in which each dispersal rate was estimated separately (B)
had a higher likelihood (InL = —120.3; Table 2) than that assuming a
single dispersal rate between all areas (In L = —147.0), though this did
not represent a significantly better fit (model weight & = 2.18 x 1077)
on account of the 42 extra free parameters and the absence of some

14



dispersal categories from the data (e. g. South America to Madagascar).
This comparison thus fails to provide support for differences in dispersal
rate. Setting rates to the reciprocals of the minimum distances or squared
distances was also not justified (o = 9.54 x 1077 and w = 3.39 x 1072,
respectively), indicating that the dispersal rates between pairs of areas
was not related to the distance between them.

Both habitat traits showed significant phylogenetic signal. The rates
of change from seasonal to perennially wet habitat and vice versa were
not significantly different (6 =2 x In(L,/L,) =0.92,df =1,P = 0.336),
habitat moisture regime evolving according to a Brownian motion process
(A = 1.01). Vegetation type, conversely, changed asymmetrically, with
transitions to open habitat occurring at a significantly higher rate than
to forest (6 =9.92,df =1, P = 0.002), and the estimated phylogenetic
signal in this character (A = 0.47) differed from both the expectation
under Brownian motion (P < 0.001) and that without phylogenetic
structure (P = 0.027).

Most of the deep nodes within Schoeneae were reconstructed as occupy-
ing perennially moist or both perennial and seasonal habitats (Fig. 4A).
The Tricostularia clade, Mesomelaena, and Cyathochaeta have special-
ized to dry environments, while Machaerina and Oreobolus associate
predominantly with perennially wet environments. In Gahnia, Costularia,
Lepidosperma and the Schoenus clade, generalist ancestors have differenti-
ated into wet- and dry-adapted lineages. The dry-adapted lineages mostly
occur in Australia and South Africa.

The ancestor of Schoeneae was inferred to have inhabited open vegeta-
tion. The main transitions into forest were in Gahnia and Costularia, both
in the last 10 Ma, with Machaerina and Lepidosperma becoming generalists
> 20Ma (Fig. 4B). Adaptation to shade is associated with dispersal to the
Pacific, Southeast Asia, and Madagascar. The shade-tolerant clades tend
to be found in perennially moist environments, but not all wet-adapted
lineages are found in shady habitats; for example, Neesenbeckia, Oreobolus,
and some Lepidosperma inhabit open wetlands.

Numerous habitat shifts were inferred in Schoeneae, involving both
generalization (“dispersal”) and specialization (“vicariance”). Habitat
shifts taking place within a geographical area did not show a directional
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bias along either habitat axis (Fig. 6). When geographical dispersal was
accompanied by a habitat shift, however, it was more often into drier (3/3)
and/or more open (3/4) habitats. Nevertheless, most of the dispersal
events (22/29) did not involve any habitat shift.

Discussion

Morphological classification in Cyperaceae suffers from uncertainty in
character homology, especially pertaining to reproductive structures (e. g.
Bruhl, 1991; Vrijdaghs et al., 2007; Reutemann et al., 2012). While ana-
lyses of floral ontogeny are helping to cut this Gordian knot (Vrijdaghs
et al., 2009, 2010; Prychid and Bruhl, 2013), they are most useful in
secondary homology assessment, requiring an a priori phylogenetic hy-
pothesis based on independent data, such as those provided by DNA
sequences. Goetghebeur (1998) classified Cladium, Rhynchospora, and
Arthrostylis as members of Schoeneae on the basis of inflorescence mor-
phology, but our results place the latter two closer to core Cyperoideae
(the clade containing Cypereae, Cariceae, and Abildgaardieae) and Cla-
dium as sister to all other Cyperoideae, consistent with Bruhl (1995),
Ghamkhar et al. (2007), and Jung and Choi (2013). Hinchliff and Roalson
(2013) placed Rhynchospora as sister to core Cyperoideae and Arthrostylis
in Abildgaardieae. However, they found strong support for Cladium as
sister to Schoeneae + Cryptangieae + Carpha. This appears to be based
on cpDNA and ITS data for about a dozen species in Cladium, Schoenus,
Gahnia, and Oreobolus and cpDNA data for other members of Schoeneae
(detailed information is not provided), so our conflicting results may be
due to the denser nrDNA sampling in this study, or our sparser sampling
of outgroup taxa. The conflict may also be the result of the difference in
computational method used, as Hinchliff and Roalson (2013) used ML,
while the more modestly sized data sets (Verboom, 2006; Jung and Choi,
2013; and this study) were analysed by Bayesian inference, which incor-
porates model uncertainty to a greater degree by producing a posterior
distribution of trees associated with a distribution of parameter values.
In agreement with Bruhl’s (1995) morphological analysis, Verboom’s
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(2006) cpDNA Bayesian analysis, Jung and Choi’s (2013) cpDNA +
ITS Bayesian analysis, and Hinchliff and Roalson’s (2013) ML analysis,
but contra the cpDNA hypothesis of Muasya et al. (2009a), our ana-
lyses confirm that the genera Becquerelia, Calyptrocarya, Diplacrum (Bis-
boeckelereae) and Scleria (Sclerieae) fall outside the Schoeneae clade.
The discordance between Muasya et al.’s (2009a) and Verboom’s (2006)
cpDNA trees may be due to the simplistic model of sequence evolution
implicit in the parsimony method employed by the former (which causes,
inter alia, long-branch attraction) and/or because they used only two
plastid regions, whereas Verboom (2006) used three. The low bootstrap
support at the deeper nodes of the Muasya et al. (2009a) tree indicates
insufficient variability in the rbcL and trnl-F regions used by them, since
conflict in the data would have manifested in our results as well.

Schoeneae was strongly supported as monophyletic in all analyses
(PP =0.99-1.00, BP = 0.83-1.00), with Trianoptiles and Carpha forming
a clade sister to Schoeneae. Verbelen (1970) and Goetghebeur (1986)
described distinct embryo types for Schoenus and Carpha, which supports
the reclassification of the Carpha clade as a separate tribe, Carpheae. Our
results do not support the Lagenocarpus clade (Cryptangieae) as separate
from the Carpha clade + Schoeneae, so the separation of Carpheae from
Schoeneae also argues for the maintenance of Cryptangieae, pending
further work on this undersampled group.

While Jung and Choi (2013) and Hinchliff and Roalson (2013) used
ITS data for members of three of the main subclades of Schoeneae, the
present study is the first to include sufficient sampling of nuclear regions
to provide independent evidence for testing relationships in the tribe.
The six main subclades identified by Verboom (2006) were also suppor-
ted by our ETS and ITS data, in both separate and combined analyses.
While robust on genetic grounds, these clades appear to lack phenotypic
apomorphies and none was recovered in Bruhl’s (1995) comprehensive
cladistic analysis of morphological characters in the family. We, there-
fore, refrain from treating them formally and instead continue to use the
provisional clade names in Fig. 1. Forthcoming work will deal with this
and related taxonomic issues, such as the polyphyly of Tetraria, Schoenus,
and Costularia, noted by Zhang et al. (2004) and Verboom (2006). Rela-
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tionships between these clades remain unresolved, despite the increased
marker and taxon sampling. The added nrDNA regions were highly in-
formative, contributing disproportionately to the variability in the data
set. Nevertheless, no nodes along the Schoeneae backbone were suppor-
ted in the MrBayes analysis, despite this method being biased in favour
of resolved trees (Lewis et al., 2005). In addition, the majority of the
trees sampled by the Phycas analysis were polytomous or inconsistently
resolved, indicating a near-instantaneous divergence at the base of the
clade, dated as taking place between [38.7-56.1] and [43.6-60.1] Ma.

Schoeneae was reconstructed as originating in Australia, its initial ra-
diation taking place on that continent. Australia had already separated
from all neighbouring landmasses except Papuasia at this time and had
yet to approach the Sundaland and Philippine Sea Plates (Wilford and
Brown, 1994; Neall and Trewick, 2008), so the broad austral distribu-
tion of Schoeneae and the divergence of its major lineages cannot be
explained as a product of the separation and isolation of once-contiguous
subpopulations due to tectonic shifts (i. e., vicariance). Within Australia,
open habitats, inferred as ancestral, would initially have been sparsely
distributed (Crisp et al., 2004), but there are records of Cyperaceae in
mid-Eocene seasonally dry forest in the Lake Eyre basin in south-central
Australia (Martin, 2006). Diversification of Schoeneae may have been
enabled by the increasing appearance of more open, sclerophyllous ve-
getation from this period onwards, especially after the initiation of the
Antarctic Circumpolar Current ca. 38-28 Ma, which is thought to have
caused drier and more seasonal climates in Australia (Quilty, 1994; Crisp
et al., 2004; Martin, 2006). However, as no shifts into closed vegetation
were inferred for the early Schoeneae, the initial divergence of the major
lineages was probably not the result of adaptation to distinct vegetation
types.

Starting in the Paleocene, Australia experienced diverse rainfall regimes
with a seasonally arid central zone, an arid northwest, and humid rain-
forest on the rest of the continent (Quilty, 1994; Crisp et al., 2004; Martin,
2006). The variation in the moisture niches of the principal schoenoid
lineages suggests that they may have radiated into different moisture
niches. Our reconstructions are ambiguous at the deeper nodes, however,
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with the result that niche partitioning at the time of the radiation lacks
clear support.

Another possibility is that radiation was non-adaptive, with initial di-
vergence being driven primarily by geographic isolation within Australia,
a real possibility if the ancestral habitat was patchily distributed. Un-
fortunately, testing for intracontinental allopatry is problematic, as the
reconstruction of paleodistributions is precluded by the sparseness of
the fossil record for Cyperaceae and for the Australian flora as a whole
(Quilty, 1994). Moreover, current distributions are unlikely to retain
a signal of historical allopatry after 50 Ma (Losos and Glor, 2003). To
understand the initial radiation in Schoeneae, more precise studies of
microhabitat are needed. Investigation of substrate characteristics is likely
to prove especially fruitful, as several instances of edaphic specialization
are known (e. g. in Lepidosperma: Barrett, 2013). In addition, study has
begun on non-ecological mechanisms of reproductive isolation such as
polyploidization.

Dispersal of Schoeneae out of Australia commenced in the Oligocene
and has been ongoing, accounting for at least fourteen dispersal events
to the Pacific Islands, New Zealand, Southeast Asia, Southern Africa,
and possibly South America (Fig. 5). Southern New Guinea is on the
Australian tectonic plate, which had already come into contact with the
Pacific and Asian plates by the Miocene (Sanmartin and Ronquist, 2004;
Neall and Trewick, 2008), potentially allowing Papuasia and Malesia
to be colonized in relatively short steps by “island-hopping”. Likewise,
while New Caledonia is thought to have been completely submerged
following the separation of Zealandia from Australia, its re-emergence
had already started by the Oligocene (Pelletier, 2007; Cluzel et al., 2012),
with volcanic islands possibly serving as stepping stones for various plant
lineages (Wilford and Brown, 1994; Ladiges and Cantrill, 2007), e. g.
Monimiaceae (Renner et al., 2010). Dispersal to New Caledonia and New
Zealand, however, has mostly taken place in the last 20 Ma (Winkworth
et al., 2002; Cook and Crisp, 2005), a pattern also apparent in Schoeneae.
A number of species of Lepidosperma not included in our analyses also
occur in New Caledonia, their presence there almost certainly being due
to recent long-distance dispersal (Barrett, 2012). Dispersal of Schoeneae
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to Southern Africa, South America, and New Zealand took place long
after direct contact with Australia had been broken and must, therefore,
have been transoceanic. Long-distance dispersal between the southern
continents has now been reported for a number of plant groups, including
from Madagascar to New Caledonia in Acridocarpus (Davis et al., 2002);
from Australia to New Caledonia, New Zealand, and the Indian Ocean
islands in Monimiaceae (Renner et al., 2010); from New Zealand to
Australia and other areas (Winkworth et al., 2002); from Australasia to
southern Africa in Restionaceae (Linder et al., 2003), Iridaceae (Goldblatt
et al., 2002), Ehrharteae (Verboom et al., 2003), and Proteaceae (Barker
et al., 2007); and in the opposite direction in gnaphaloid Asteraceae,
Danthonioideae, and six other taxa (Bergh and Linder, 2009; Pirie et al.,
2012). The schoenoid sedges are, however, exceptional in terms of the
sheer number of transcontinental dispersal events that have taken place
since the mid-Miocene.

In light of this high dispersal ability, it seems surprising that no Schoeneae,
other than Schoenus nigricans and S. ferrugineus L., have crossed the trop-
ics into the Northern Hemisphere. Since our model comparisons indicate
a limited role for geographic distance in determining dispersal rates in
Schoeneae (in contrast to the situation in Danthonioideae; Linder et al.,
2013), other factors are required to explain this pattern. Of likely import-
ance is niche conservatism, a phenomenon whose biogeographic influence
has been demonstrated in a range of plant groups, from both the North-
ern and Southern Hemispheres (Donoghue, 2008; Crisp et al., 2009). In
Schoeneae, limited dispersal into the Northern Hemisphere has likely been
constrained by the association of this lineage with the cool-temperate,
nutritionally-deficient conditions that typify the austral zone. Although we
have not tested this idea directly, our analyses do demonstrate significant
phylogenetic conservatism (signal) in habitat moisture and vegetation
openness, with Schoeneae dispersing into areas with the same habitat in
22 out of 29 cases (Fig. 6). In some instances, dispersal only took place
after adaptation to novel habitats (e. g. dispersal to tropical China and
India following adaptation to shaded habitats in Machaerina, Gahnia),
while in others no change was involved (e. g. dispersal to South America
and Southern Africa). Although denser species sampling, especially of
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Lepidosperma, might alter our interpretation, these results argue for the
general importance of ecological opportunity in structuring historical
dispersal in Schoeneae.

In this context, paleeoenvironmental perturbations operating at a re-
gional scale have likely been influential in generating opportunities for
dispersal, and in dictating the timing of such dispersal. The colonization
of South America by Oreobolus, for example, coincided with Andean uplift
and the opening up of the oligotrophic paramo vegetation type (Chacon
et al., 2006), these changes likely enhancing the invasive success of this
lineage. Similarly, the establishment of fynbos vegetation and its associ-
ated fire regime on the more nutrient-deficient substrates of the South
African Cape, ca. 20 Ma or earlier (Bytebier et al., 2011), likely facilitated
entry into the region by the progenitors of the Tetraria s.s. (23.0-37.5 Ma)
and reticulate-sheathed Tetraria (10.7-20.7 Ma) clades. Members of both
lineages resprout vigorously in the wake of fire (Slingsby, 2011) and, like
closely related Schoenus (Shane et al., 2006), probably possess dauciform
roots, reflecting adaptation to conditions of nutrient deficiency.

Conclusion

The six principal schoenoid lineages were differentiated during a dra-
matic radiation event taking place within Australia ca. 50 Ma, the rapid
tempo of lineage divergence at this time accounting for a lack of phylo-
genetic resolution at the base of Schoeneae. From this starting point,
members of the lineage dispersed freely, colonizing most landmasses in
the Southern Hemisphere, sometimes repeatedly. We report a minimum
of 29 transoceanic dispersal events since the Oligocene. Since dispersal
rates are not related to geographic distance, factors other than geography
are required to explain the australly biased distribution of this group.
We propose a key role for niche conservatism, demonstrating that most
transoceanic dispersal in Schoeneae has proceeded without change in the
habitat variables examined. Further work is needed to test this idea more
fully, however, specifically investigating the role of edaphic and climatic
niche conservatism as a determinant of the distribution of the schoenoid
sedges.
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Appendix 1. Vouchers

For each taxon, information is displayed in the following sequence: Spe-
cies, Voucher (supplied only for new sequences), GenBank accession num-
bers: ITS, ETS, rbcL, rps16, trnL. New sequences KF553442-KF553627
are in bold.

Arthrostylis aphylla R.Br., —, —, AY506757, AY725939, —, AY506700.
Becquerelia cymosa Brongn., Thomas et al. 10284 (K), KF553533, —,
Y12948, KF553464, KF553496. Calyptrocarya sp. (ITS, ETS), bicolor
(H.Pfeiff.) T.Koyama (rbcL), Kew 11301 (K), KF553534, KF553442,
EF178540, —, —. Capeobolus brevicaulis (C.B.Clarke) Browning, Ver-
boom 646, KF553535, KF553443, DQ058343, DQ058324, DQ058303.
Carex magellanica Lam., —, AY757655, AY278292, GQ469849, EU541818,
AY757521. Carpha alpina R.Br., —, —, DQ385557, AF307909, —, AY230010.
Carpha capitellata var. bracteosa (C.B.Clarke) Kiik., Muasya 4759,
KF553536, —, KF553598, KF553465, KF553497. Carpha glomerata
Nees, ITS, ETS: Muasya 5863; rps16: Muasya 1176, KF553537, KF553444,
AY725941, KF553466, AY230024. Caustis dioica R.Br., MW Chase 2225
(K), KF553538, —, Y12976, KF553467, KF553498. Chrysitrix capen-
sis L., Muasya 3333, KF553539, —, AJ419938, AY344148, AY344171.
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Cladium mariscus (L.) Pohl, MJC 292 (K), KF553540, —, DQ058338,
DQO058319, AY344172. Costularia arundinacea (Sol. ex Vahl) Kiik., —

, — —, —, —, AY230036. Costularia fragilis (Daniker) Kiik., —, —,

—, EU828589, —, —. Costularia laxa Cherm., —, —, DQ450465, —,

—, DQ456955. Costularia leucocarpa (Ridl.) H.Pfeiff., Larridon et al.
2010-0140, KF553541, —, KF553599, KF553468, KF553499. Costu-
laria natalensis C.B.Clarke, Verboom 773, KF553542, KF553445, DQ058345,
DQO058326, DQ058305. Costularia nervosa J.Raynal, —, —, —, —,
—, AY230032. Costularia pantopoda (Baker) C.B.Clarke, var. panto-
poda, Larridon et al. 2010-0144, KF553543, —, KF553600, KF553469,
KF553500. Costularia pantopoda var. baronii (C.B.Clarke) Kiik., Lar-
ridon et al. 2010-0139, KF553544, —, KF553601, KF553470, KF553501.
Costularia sp. 1, Larridon et al. 2010-0153, KF553545, —, KF553602,
KF553471, KF553502. Costularia sp. 2, Larridon et al. 2010-0219,
KF553546, —, —, KF553472, KF553503. Costularia sp. 3, Larridon

et al. 2010-0249, KF553547, —, KF553603, KF553473, KF553504.
Cyathochaeta avenacea (R.Br.) Benth., Verboom 1248, KF553548, —,
KF553604, KF553474, KF553505. Cyathochaeta diandra (R.Br.) Nees,
Wilson 9468, KF553549, —, —, —, AY230042. Cyathocoma hexandra
(Nees) Browning, Verboom 648, KF553550, —, DQ058344, DQ058325,
DQO058304. Cyperus rigidifolius Steud., —, —, —, Y13016, AF449535,
AY040600. Diplacrum caricinum R.Br. (ITS), africanum (Benth.) C.B.Clarke
(rbcL), —, —, AB261688, AY725942, —, —. Epischoenus cernuus Levyns,
Verboom 707, KF553551, —, KF553605, KF553475, KF553506. Epis-
choenus gracilis Levyns, Verboom 636, KF553552, —, DQ058349, DQ058332,
DQO058311. Epischoenus villosus Levyns, Verboom 1144, KF553553,
—, KF553606, KF553476, KF553507. Eriophorum vaginatum L., —,
AY242009, AY242008, Y12951, AF449553, AY757692. Evandra aristata
R.Br., ITS: Bruhl 2108; ETS: Wilson 8974; trnL: Barrett 5356, KF553554,
KF553446, AY725944, —, KF553508. Ficinia paradoxa (Schrad.) Nees,
ETS, ITS: Verboom 534; rps16: Tshiila 13, KF553555, KF553447, DQ058354,
KF553477,DQ058317. Gahnia aspera (ITS) var. globosa (trnL) (R.Br.)
Spreng., —, —, AB261676, —, —, AF285073. Gahnia baniensis Benl,
Simpson 2737 (K), KF553556, —, DQ058342, DQ058323, DQ058302.
Gahnia trifida Labill., Verboom 1228, KF553557, —, KF553607, KF553478,
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KF553509. Gahnia tristis Nees ex Hook. & Arn., Shaw 885 (K), KF553558,
AB261677, —, KF553479, KF553510. Hypolytrum nemorum (Vahl)
Spreng., —, —, AY242046, Y12958, AY344142, AJ577325. Lageno-
carpus albo-niger (A.St.-Hil.) C.B.Clarke, Thomas et al. 11111 (K),
KF553559, KF553448, AY725949, KF553480, KF553511. Lepidosperma
aff. filiforme Labill., ITS: Bruhl 1898A; ETS: Barrett 4463, KF553560,
KF553449, —, —, AF285074. Lepidosperma laterale R.Br., Hosking
1786, KF553561, DQ385587, —, —, KF553512. Lepidosperma longit-
udinale Labill., ITS: Hodgon 345; ETS, rbcL, rps16, trnL: Verboom 1236,
KF553562, KF553450, KF553608, KF553481, KF553513. Lepidosperma
tortuosum EMuell., ITS: Bruhl 2357; ETS, rps16, trnL: Coveny 17470 (K),
KF553563, KF553451, AY725950, KF553482, KF553514. Machaerina
iridifolia (Bory) T.Koyama, Ah-Peng 1742, KF553564, —, KF553609,
KF553483, KF553515. Machaerina juncea (R.Br.) TKoyama, ETS: Bar-
rett 3352; rbcL, rps16, trnl: Verboom 1229, KF553565, —, KF553610,
KF553484, KF553516. Machaerina mariscoides (Gaudich.) J.Kern, Johns
9195 (K), KF553566, —, DQ058340, DQ058321, DQ058300. Machaer-
ina rubiginosa (Spreng.) T.Koyama, ETS, trnL: Bruhl 1859; rbcL: Wilson
9456, KF553567, AB261679, KF553611, —, KF553517. Mapania cuspidata
(Miq.) Uittien, —, —, —, DQ058337, DQ058318, DQ058297. Mesomelaena
pseudostygia (Kiik.) K.L.Wilson, Barrett 5279, KF553568, —, DQ058341,
DQO058322, DQ058301. Mesomelaena tetragona (R.Br.) Benth., Chase
2227 (K), —, —, Y12949, KF553485, KF553518. Morelotia gahnii-
formis Gaudich., ITS: Morden 2117; trnL: Morden s.n., —, KF553452,
EF178576, —, KF553519. Neesenbeckia punctoria (Vahl) Levyns, ITS:
Bruhl 1731; ETS: Verboom 650, KF553569, KF553453, AY725952, DQ058327,
DQO058306. Oreobolus distichus EMuell., Coveny 5373 (K), KF553570,
DQ450468, —, —, AY230030. Oreobolus kuekenthalii Steenis ex Kiik.,
—, —, AY242047,Y12972, —, EF178536. Oreobolus obtusangulus Gaud-
ich., — —, DQ450472, AF307926, —, DQ456962. Oreobolus oligoceph-
alus W.M.Curtis, —, —, DQ450473, —, —, DQ456963. Oreobolus pec-
tinatus Hook.f., —, —, DQ450475, AF307927, —, DQ456965. Pseudoschoenus
inanis (Thunb.) Oteng-Yeb., Muasya 4384, —, —, KF553612, KF553486,
KF553520. Ptilothrix deusta (R.Br.) K.L.Wilson, ITS: Bruhl 2055; ETS:
Gibbs 46, KF553571, KF553454, —, —, AY230041. Rhynchospora rugosa
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subsp. brownii (Roem. & Schult.) T.Koyama, Verboom 616, KF553572,
KF553455, DQ058353, DQ058336, AY230043. Schoenus bifidus (Nees)
Boeckeler, ITS: Hodgon 784; rps16, trnL: Verboom 1249, —, KF553456, —

, KF553487, KF553521. Schoenus caespititius W.Fitzg., Verboom 1255,
KF553573, —, —, KF553488, KF553522. Schoenus curvifolius (R.Br.)
Roem. & Schult., ITS: Barrett 4174; ETS, rbcL, rps16, trnL: Verboom 1240,
KF553574, KF553457, KF553613, KF553489, KF553523. Schoenus
efoliatus EMuell., ITS: Barrett 5341; ETS, rbcL, rps16, trnL: Verboom
1235, KF553575, KF553458, KF553614, KF553490, KF553524. Schoenus
grandiflorus (Nees) EMuell., ITS, trnL: Wilson 8847; ETS: Barrett 3364,
KF553576, KF553459, —, —, KF553525. Schoenus nigricans L., Haase

et al. s.n. (K), —, KF553460, Y12983, DQ058331, DQ058310. Schoenus
nitens (R.Br.) Roem. & Schult., Gibbs 133, KF553577, KF553461, —, —

, KF553526. Schoenus pennisetis S.T.Blake, Verboom 1237, KF553578,
—, KF553615, KF553491, KF553527. Schoenus rigens S.T.Blake, Bar-
rett 5234, KF553579, GU386455, —, —, KF553528. Scleria distans
Poir., Muasya 1023, —, KF553462, DQ058339, DQ058320, DQ058299.
Tetraria bolusii C.B.Clarke, Verboom 606, KF553580, —, KF553616,
DQO058335, DQ058315. Tetraria capillaris (EMuell.) J.M.Black, ETS,
rbcL: Wilson 9464; trnL: Bruhl 2484, KF553581, DQ385604, KF553617,
—, KF553529. Tetraria compacta Levyns, Verboom 614, KF553582, —,
DQO058351, KF553492, DQ058313. Tetraria compar (L.) PBeauv., Ver-
boom 549, KF553583, —, DQ058350, DQ058333, DQ058312. Tetraria
crassa Levyns, Verboom 507, KF553584, —, DQ058352, DQ058334,
DQO058314. Tetraria cuspidata (Rottb.) C.B.Clarke, Verboom 520, KF553585,
—, KF553618, DQ419897, DQ419865. Tetraria exilis Levyns, Verboom
623, KF553586, —, KF553619, DQ419898, DQ419866. Tetraria flexuosa
(Thunb.) C.B.Clarke, Verboom 505, KF553587, —, KF553620, DQ419891,
DQ419859. Tetraria involucrata (Rottb.) C.B.Clarke, ETS: Verboom
1283; rbcL: Verboom 661, KF553588, —, KF553621, DQ419884, DQ419852.
Tetraria microstachys (Vahl) H.Pfeiff., Verboom 640, KF553589, —,
DQO058347, DQ058328, DQ058307. Tetraria nigrovaginata (Nees) C.B.Clarke,
Verboom 500, KF553590, —, KF553622, DQ419889, DQ419857. Tet-
raria picta (Boeckeler) C.B.Clarke, Verboom 524, KF553591, —, KF553623,
DQ419899, DQ419867. Tetraria sylvatica (Nees) C.B.Clarke, Verboom
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515, KF553592, —, KF553624, DQ419896, DQ419864. Tetraria trian-
gularis (Boeckeler) C.B.Clarke, Verboom 518, KF553593, —, —, DQ419885,
DQ419853. Tetraria ustulata (L.) C.B.Clarke, Verboom 664, KF553594,

—, KF553625, DQ419893, DQ419861. Tetraria variabilis Levyns, Ver-
boom 508, KF553595, —, KF553626, KF553493, KF553530. Tetrariopsis
octandra (Nees) C.B.Clarke, Verboom 1242, —, —, KF553627, KF553494,
KF553531. Trianoptiles capensis (Steud.) Harv., Muasya 3160, KF553596,
KF553463, —, KF553495, KF553532. Tricostularia pauciflora (R.Br.)
Benth., Gibbs 53, KF553597, —, AY725954, —, AY230038.
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Table 1. Sizes, distributions, and habitats of the main clades in Schoeneae and extent

of sampling in this study.

No. of Number LX%- Distribu- g feren-
Clade Taxa included . por- Distribution tion Habitat
species sampled ces
tion sampled
SE Aus; NZ; Pap; .. Zhang . .
Carpha Carpha 15 3 0.2 Japan; S+E+C Afr; IS\L:erZ, etal. L?Oiwasr?rzsanfiosrir;i(s)vgrtii‘l;g;:ltltudes, often
Masc; Mad; S Am (2004) 8
Zhang
Trianoptiles 3 1 03 S Afr S Afr etal.  Inwetland
(2004)
Caustis Caustis 5 0.2 Aus Aus In open forest or scrub, on dry sandy soil,
also at the edge of streams
Evandra 2 1 05 Aus Aus On wet spots in heathland
. . Aus; NZ; China; Mal;  Aus; Mal; In swampy to wet places in lowland and at
Gahnia  Gahnia 40 4 01 Ne Hawaii NC high altitude
Cyathochaeta 5 2 04 Aus Aus In marshes
Mesomelaena 5 2 04 Aus Aus In heath formations
Ptilothrix 1 1 1 Aus Aus In open vegetation
. . Aus; NC; NZ; China; . Along rivers and in woodland, rarely in
Lepidosperma Lepidosperma 66 4 01 Mal Aus; NZ mountain heath vegetation
Aus; Mal; China; Aus; Mal; In wetlands, sometimes as floating mats, or
Machaerina 51 4 0.1 Pacific; NZ; C+S Am; E NC; NZ; in woodlamis often at higher altitgudes i
Afr; Mad; Masc Mad i g
Tetraria Barrett .
capillaris 9 1 0.1 Aus; NZ Aus; NZ  etal, in ?long ?reeks and in woodland and heath
ormations
complex prep.
Neesenbeckia 1 1 1 S Afr S Afr At stream sides
Aus; Mal; NZ; S Am;  Aus; Mal; Seberg . . .
Oreobolus  Oreobolus 16 5 0.3 Hawaii NZ: S Am (1988) In wet alpine and subantarctic vegetation
Costularia
subgenera . . S Afr; Raynal In scrubby vegetation on rocky ground,
Costularia & 15 6 04 § Afr; Mad; NC Mad; NC (1974) rarely in forest fringes
Chamaedendron
Capeobolus 1 1 1 S Afr S Afr Fynbos (heath)
Cyathocoma 3 1 03 S Afr S Afr On mountain slopes
Aus; NZ; Japan; China; Aus: NZ: Bruhl et
Schoenus Schoenus s. s. 105 7 0.1 Mal; S Afr; Eur; W Asia; Malt S A’fr al.,in  Often in humid grassland or woodland
S US; CAm; S Am ’ pre;
Levyns In rather dry, sandy, or rocky places on
Tetraria s.s. 30 9 03 S Afr S Afr vy mountain slopes, more rarely in marshy
(1947)
places
. Levyns In damp to marshy places, often low- to
Epischoenus 7 2 03 S Afr S Afr (1959) mid-montane
Tricostularia Tricostularia 5 1 02 Aus; NC; Mal Aus i‘;i’lsspen heath or scrubland, on humid sandy
Morelotia 2 1 05 NZ; Hawaii Hawaii On dry open hillsides
Tetraria 1 1 1 Aus Aus Sedgeland, heath, woodland
octandra
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Bruhl et

Schoenus p. p. 3 2 07 Aus Aus al,in  Often in humid grassland or woodland
prep.
Reticulate- Slinasb In rather dry, sandy, or rocky places on
sheathed 46 6 0.1 S+E Afr S Afr (20181) Y mountain slopes, more rarely in marshy
Tetraria places
Epischoenus 1 1 1 S Afr S Afr Seasonal swamps, open heath
cernuus
Costularia NC; Mal; Pap; Raynal In scrubby vegetation on rocky ground,
subgen. 9 1 o1 Seychelles NC (1974) rarely in forest fringes
Lophoschoenus 4 Y 8
Unknown  Reedia 1 0 0 Aus — In swamps
Gymnoschoenus 2 0 0 Aus — Swamps, sedgeland or heathlike vegetation
Ingroup total 450 69 0.15

Notes: Species from polyphyletic genera were assigned to clades on the basis of published and pre-
liminary results (listed references and Verboom, 2006). Clade sizes and distributions were inferred
from the World Checklist of Monocotyledons (Govaerts et al., 2011) and the listed references. Hab-
itat descriptions are from Goetghebeur (1998) and our own observations. Afr, Africa; Am, America;
Aus, Australia; Mad, Madagascar; Mal, Malesia; Masc, Mascarenes; NC, New Caledonia; NZ, New

Zealand; Pap, Papuasia.
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Table 2. Comparison of dispersal models, showing that incorporating geographic
distance did not result in better model fit and that the large number of
parameters in the most complex model (B) was not justified by a sufficient
increase in the likelihood.

Global Global No. of Model weight

Model dispersal extinction InL para- AIC odelwe gw
rate rate meters

A. All rates equal 0.004 0.000 —147.0 2 298.0 1.00

B. All rates
estimated separately
C. Rates inversely
proportional to 0.030 0.000 —160.8 2 3257 9.55x 1077
minimum distance
D. Rates inversely
proportional to
minimum distance
squared

0.276 0.000 —-120.3 44 328.7 2.18 x 1077

0.042 0.000 —-212.5 2 429.1 3.39x107%
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Fig. 1. Bayesian tree of Schoeneae based on ETS, ITS, rbcL, rps16, and trnl.
The tree is plotted with the branch lengths estimated in MrBayes. The scale
bar is in substitutions per site. Shaded points on each branch represent, from
left to right, PP values from MrBayes, PP values from Phycas, and BP values
from RAXML. Clades in Schoeneae are labelled with the informal names used

in the text.
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Maximum-likelihood reconstruction of ancestral distributions in Schoeneae.

Coloured boxes indicate the areas with a proportional likelihood (averaged
over 1000 BEAST trees and summed over all distribution ranges containing
the area) of pL > 0.50 at each node, plotted on the consensus tree (nodes
with PP < 0.50 collapsed). Note that three of the nodes had no areas with
total pL > 0.50. Please see Appendix S4 (online) for the pL values of each
combination of areas. Maps are based on Wilford and Brown (1994). Geological
epochs follow Gradstein et al. (2004) and are indicated with the standard
abbreviations. Aus, Australia; Mad, Madagascar; Pac, Pacific Islands; NZ, New
Zealand; SAf, Southern Africa; SAm, South America; SEA, Southeast Asia.
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Fig. 4. Maximum-likelihood reconstructions of ancestral habitats in Schoeneae, shown
as the proportional likelihood of each state at ancestral nodes.
(A) Moisture regime. (B) Vegetation type.



Fig. 5. Inferred dispersal events in Schoeneae.
Arrow thickness is proportional to the number of events. The six dispersal
events in the Oreobolus clade for which the source area was ambiguously
reconstructed have been omitted. Maps were drawn using the R packages
maps v. 2.2-6 and mapproj v. 1.1-8.3.
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Fig. 6. Number of habitat shifts along branches with and without dispersal events.
Counts were binned into classes of width 3; arrow thickness is proportional
to the class mean. Loops represent branches where no shift occurred. D,
seasonally dry; W, perennially wet; E forest (closed-canopy) vegetation; O,
open vegetation.
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Appendix S1. Gene trees of Schoeneae inferred with MrBayes and RAXML.
Scale bar is in substitutions per site. Node support is indicated by
PP values above subtending branches and BP values below. Clades in
Schoeneae are labelled with the informal names used in the text.
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Appendix S1. Gene trees (continued).
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Appendix S1. Gene trees (continued).
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Appendix S3. Dated tree of Schoeneae reconstructed in BEAST.
Branch thickness indicates node support. Nodes with PP < 0.5 have
been collapsed. Grey bars indicate 95 % HPD intervals of node ages.
Geological epochs follow Gradstein et al. (2004) and are indicated with
the standard abbreviations.



Appendix S4. Proportional likelihoods of ancestral areas at each node of the
Schoeneae tree. (See inset for node numbers and Fig. 3 for area codes.)
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Appendix S4. Proportional likelihoods of ancestral areas at each node of the
Schoeneae tree (continued).
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"\I'ftral'la_octaﬂd[? .

orelotia gahniiformis

ostularia arundlna?ea

etraria nigrovaginata
Tetraria microstachys
Tetraria triangularis

etraria involucrata

pischoenus cernuus
¥etrarla stulata

etraria flexuosa

ostul rlffl nebrvosa .
apeobolus brevicaulis
Cyathocoma hexandra
Qreobolus obtusangulus
Qreobolus pectinatus
Oreobolus oligocephalus
Oreobolus kuekenthalii
Oreobolus distichus
Sostularla laxa

ostularia pantopoda pantopoda
Costularia pantopoda baronii
805tu|arla atalensis

ostularia leucocarpa
Costularia fragilis .
Mesomelaena pseudostygia

tilothrix deusta

esomelaena tetragona
Cyathochaeta diandra
Cyathochaeta avenacea
Gahnia trifida
Gahnia banjensis
ganma tristis

ahnia aspera
Schoenus bifidus
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Schoenus caespititius
Schoenus efoliatus
Schoenus rigens

7

[os]

{s

46‘——

Schoenus nigricans
Schoenus pennisetis
choenus nitens
etraria picta
Tetraria sylvatica
Tetraria compar
Epischoenus villosus

9|16 Epischoenus gracilis

10
1

125

a bolusii

crassa
a compacta
a exilis
a variabjlis
a cuspidata

Tetrar|

[

Tetrar
etrar
etrar

Inset: Node numbers used in Appendix S4.



